

ОКПД2 26.51.51.140

Преобразователи температуры и влажности ПТВ (модификация ПТВ-1, ПТВ-2, ПТВ-3)

Руководство по эксплуатации КПЛШ. 405211.040 РЭ

СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ	4
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	6
3 УСТРОЙСТВО И РАБОТА	11
4 КОМПЛЕКТ ПОСТАВКИ	12
5 МЕРЫ БЕЗОПАСНОСТИ	13
6 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	14
7 МЕТОДИКА ПОВЕРКИ	16
8 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	23
9 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	24
10 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	25
ПРИЛОЖЕНИЕ А ГАБАРИТНО – МОНТАЖНЫЕ РАЗМЕРЫ	26
ПРИЛОЖЕНИЕ Б СХЕМЫ ПОДКЛЮЧЕНИЯ ПТВ	34
ПРИЛОЖЕНИЕ В СВИДЕТЕЛЬСТВО О ПОВЕРКЕ	35
ПРИЛОЖЕНИЕ Г ОБОЗНАЧЕНИЯ ПРИ ЗАКАЗЕ ПРИБОРОВ	36

Настоящее руководство по эксплуатации содержит сведения о конструкции, принципе действия, характеристиках преобразователей температуры и влажности ПТВ модификаций ПТВ-1, ПТВ-2, ПТВ-3 (далее по тексту – ПТВ) и указания, необходимые для правильной и безопасной эксплуатации преобразователей.

1 НАЗНАЧЕНИЕ

- 1.1 Преобразователи температуры и влажности модификаций ПТВ-1, ПТВ-2, предназначены для измерения температуры, относительной влажности, а преобразователи модификаций ПТВ-3 дополнительно температуры точки росы и влагосодержания газообразных, в т.ч. агрессивных сред и непрерывное преобразование их значений в унифицированные аналоговые выходные сигналы 4-20 мА или цифровые сигналы по интерфейсу RS-485.
- 1.2 ПТВ применяются для измерения гигрометрических характеристик газов в системах автоматического контроля, регулирования и управления технологическими процессами в промышленности; энергетике, в т.ч. атомной; в сельском хозяйстве.
 - 1.3 ПТВ выпускаются в следующих исполнениях:
 - 1. по условиям применения:
 - общепромышленное коррозионно-стойкое;
- повышенной надежности для эксплуатации на объектах АЭС (код обозначения «АС»);
 - взрывозащищенное (код обозначения «Ex»).
 - 2. по конструктивным особенностям:
 - для канального монтажа (ПТВ-1/M1, ПТВ-2/M1, ПТВ-3/M1);
 - для настенного монтажа (ПТВ-2/M2, ПТВ-3/M2);
 - с индикацией измеряемых параметров (ПТВ-2/М1И, ПТВ-3/М2И);
 - 3. по выходным сигналам и интерфейсам:
 - с токовыми сигналами (4-20) мА, HART;
 - интерфейсами RS-232, RS-485;
 - 1.4 В соответствии с НП-001-15 относятся:
 - к классам безопасности 2, 3, 4;
 - по назначению к элементам нормальной эксплуатации;
 - по характеру выполняемых функций к управляющим элементам.

Пример классификационного обозначения 2, 2H, 2HУ, 3, 3H, 3HУ.

- 1.5 ПТВ являются сейсмостойкими и обеспечивают повышенную защищенность от электромагнитных полей и низкий уровень радиочастотных помех.
 - 1.6 В соответствии с ГОСТ 25804.1-83 ПТВ относятся:
- по характеру применения к категории Б аппаратура непрерывного применения;
- по числу уровней качества функционирования к виду I аппаратура, имеющая два уровня качества функционирования номинальный уровень и отказ.
 - 1.7 В соответствие с ГОСТ 13384-93 ПТВ являются:
 - по эксплуатационной законченности к изделиям третьего порядка;
 - по количеству каналов преобразования сигналов двухканальными;
- по зависимости выходных сигналов от преобразуемых температуры и относительной влажности – с линейной зависимостью;

- по устойчивости к климатическим воздействиям при эксплуатации соответствуют группе исполнения С3 по ГОСТ Р 52931-2008.
- 1.8 По защищенности от воздействия окружающей среды в соответствие с ГОСТ 14254-96 ПТВ относятся к IP54.
- 1.9 По устойчивости к механическим воздействиям при эксплуатации ПТВ относятся к группе исполнения М6 согласно ГОСТ 17516.1-90.
- 1.10 По устойчивости к сейсмическим воздействиям ПТВ исполнения «АС» относятся к I категории сейсмостойкости по НП-031-01 и группе Б исполнения 3 по РД 25818-87. ПТВ являются стойкими, прочными и устойчивыми к воздействию землетрясения с уровнем сейсмичности 9 баллов по шкале MSK-64 на уровне установки до 40 м в соответствие с ГОСТ 25.807.3-83.
 - 1.11 По устойчивости к электромагнитным помехам:
- ПТВ исполнения «ОП» соответствует группе исполнения III, критерий качества функционирования А по ГОСТ Р 50746-2000;
- ПТВ исполнения «AC» соответствует группе исполнения IV, критерий качества функционирования A по ГОСТ Р 50746-2000.
- 1.12 Взрывозащищенные преобразователи ПТВ соответствуют требованиям ГОСТ 30852.0-2002, ГОСТ 30852.10-2002, имеют особовзрывобезопасный уровень взрывозащиты, обеспечиваемый видом взрывозащиты «искробезопасная электрическая цепь» уровня «ia», и маркировку взрывозащиты ExialICT6 X.
- 1.13 Питание взрывозащищенных преобразователей ПТВ осуществляется от искробезопасных источников постоянного тока напряжением 24 В или источников питания в комплекте с барьерами искрозащиты с уровнем взрывозащиты «особовзрывобезопасный».

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Метрологические характеристики ПТВ приведены в табл. 2.1.1 и табл.2.1.2.

Таблица 2.1.1 - Диапазоны измерения температуры и относительной влажности

Диапазоны измерения	Диапазоны измерения	Пределы допускаемой основой абсолютн погрешности измерений			
температуры, °С	относительной влажности, %	Температуры,°С			тельной ости,%
		Группа А	Группа Б	Группа А	Группа Б
-25+25				-	
0+50	598				
0+100					
-40+100		±0,2	±0,4	±2	±3
-25+25	0100	1			
0+50					
0+100					
-40+100					
-40+110					

Таблица 2.1.2 – Диапазоны определения температуры точки росцы, абсолютной влажности, объемного влагосодержания

Таблица 2.1.2

	ени Ины		Пределы допускаемой основной погрешности		
Измерения величины	Условное обозначени е величины	Диапазон измерений	Группа А	Группа Б	
Температура точки росы	T _D	От минус 40 до плюс 80 °C	±1 °C*) ±2 °C**) ±4 °C***)	±1,5 °C* ±3 °C** ±6 °C***	
Абсолютная влажность (при t=20 °C)	α	От 0 до 18 г/м ³	±2 %	±3 %	
Объемное влагосодержание (при t=20 °C)	х	От 0 до 2500х $\frac{100}{\rho}$ млн ⁻¹ Где Р – абсолютной давление в кПа	±2 %	±3 %	

Примечания:

- 1. Указанные пределы основной абсолютной погрешности измерений относительной влажности (±3%) указаны для диапазона от 10 до 90 %, за пределами данного диапазона погрешность ±7%.
- 2. Диапазоны измерения могут задаваться отличными от приведенных внутри диапазонов.
- 3. Допускаемая основная погрешность измерения абсолютной влажности и влагосодержания γ_n , приведенная к диапазону преобразования, вычисляется по формуле:

$$\gamma_{\Pi} = \gamma \cdot \frac{D_u}{D_{\Pi}}$$
, (2.1)

где у – допускаемая основная погрешность в % от диапазона измерений;

- D_{u} и D_{n} диапазоны измерений (при данных температуре и давлении анализируемого газа) и преобразования соответственно.
 - 3. * для T-T_D<20;
 - ** для 20<T-T_D<50;
 - *** для 50 <T-T_D<60.
- 4. **** при увеличении (уменьшении) температуры анализируемого газа на 10 °C диапазон измерений увеличивается (уменьшается) в 1,8 раза.
 - 2.2 Диапазон унифицированных токовых выходных сигналов:
 - 4-20 или 20-4 мА;
- 2.3 ПТВ с выходом по току имеют линейную характеристику выходного сигнала. Номинальная статическая характеристика ПТВ соответствует следующему виду

$$I = \frac{(A - A_H)}{(A_B - A_H)} * (I_B - I_M) + I_M , \qquad (2.2)$$

где I – текущее значение выходного сигнала, мА;

 $I_{\rm B}, I_{\rm H}$ – верхнее и нижнее пределы измерений;

A – значение измеряемой величины в тех величинах, что $A_{\scriptscriptstyle B}$ и $A_{\scriptscriptstyle H}$.

- 2.4 Вариации выходного токового сигнала не превышает 0,5 предела допускаемой основной погрешности.
- 2.5 Пульсации выходного токового сигнала не превышает 0,25 % верхнего предела измерения выходного сигнала при сопротивлении нагрузки 250 Ом для напряжения питания 24 В и 500 Ом для напряжения питания 36 В.
- 2.6 ПТВ устойчивы к воздействию синусоидальных вибраций с частотой перехода от 57 до 62 Гц со следующими параметрами:
 - частота (5...80) Гц;
 - амплитуда смещения для частоты ниже частоты перехода 0,15 мм;
 - амплитуда ускорения для частоты выше частоты перехода 19,6 м/с².

Предел допускаемой дополнительной погрешности во время действия вибрации не превышает предела допускаемой основной погрешности.

- 2.7 Дополнительная погрешность, вызванная изменением температуры окружающего воздуха от нормальной (20±5) °С до любой температуры в пределах рабочих температур на каждые 10 °С изменения температуры, не превышает 0,5 предела допускаемой основной погрешности.
- 2.8 Дополнительная погрешность измеряемой влажности, вызванная изменением температуры анализируемого газа на каждые 10 °C изменения температуры в диапазоне измерений температур, не превышает 0,5 предела допускаемой основной погрешности.

- 2.9 Дополнительная погрешность, вызванная воздействием повышенной влажности, не превышает 0,5 предела допускаемой основной погрешности.
- 2.10 Дополнительная погрешность, вызванная воздействием постоянных и/или переменных магнитных полей промышленной частоты напряженностью до 300 А/м, не превышает 0,5 предела допускаемой основной погрешности.
- 2.11 Питание осуществляются от источников постоянного тока напряжением от 12 до 36 В при номинальных значениях (24±0,48) В. Пульсация (двойная амплитуда) напряжения питания не должна превышать 0,5 % от номинального значения напряжения питания.
 - 2.12 Мощность потребления не превышает:
 - 1. для ПТВ 1, ПТВ 2:
 - 1,5 B·A
 - 2. для ПТВ 3:
 - 3,5 B·A
- 2.13 Дополнительная погрешность, вызванная отклонением ±15 % не превышает 0,5 предела допускаемой основной погрешности.
- 2.14 Нагрузочное сопротивление по токовому выходу не должно превышать значений, указанных в табл. 2.2.

Таблица 2.2

Диапазон унифицированного выходного сигнала, мА	Напряжение питания, В	Нагрузочное сопротивление, не более,
4 – 20	24	500 Ом

2.15 Максимальное нагрузочное сопротивление $R_{\text{н max}}$, кОм при напряжении питания в диапазоне от 12 до 36 В вычисляется по формуле:

$$RH_{max} = \frac{U - U_{min}}{R_{max}},\tag{2.3}$$

Где U – напряжение питания, В;

 $U_{min} = 12 B;$

 $R_{max} = 24 \text{ MA}.$

- 2.16 Время установления аналогового выходного сигнала (время, в течение которого выходной сигнал 4-20/20-4 мA) входит в зону предела дополнительной основной погрешности, не более:
 - Для канала измерения влажности 5 мин;
 - Для канала измерения температуры 20 мин.

- 2.17 Характеристики интерфейса RS 485:
- Программируемая скорость передачи: 9600, 19200, 38400, 57600, 115200 бит/с;
- Диапазон задания адресов 1 256;
- Длина линии связи (экранированная витая пара), не более 1000 м.
- 2.18 ПТВ обладают прочностью и герметичностью при испытательных давлениях до 2,5 МПа.
- 2.19 Электрическое сопротивление изоляции цепи питания ПТВ относительно корпуса, не менее:
- 20 мОм при температуре окружающего воздуха (20 \pm 5) $^{\circ}$ С и относительной влажности от 30 до 80 %:
- 5 мОм при верхнем значении температуры рабочих условий и относительной влажности от 30 до 80 %;
- 1 мОм при верхнем значении относительной влажности рабочих условий и температуре окружающего воздуха (35 ± 5)°C.
- 2.20 Изоляция цепи питания ПТВ относительно корпуса выдерживает в течение 1 мин действие испытательного напряжения практически синосоидальной формы частотой от 45 до 65 Гц:
- 120 В при температуре окружающего воздуха (20 ± 5) $^{\circ}$ С и относительной влажности от 30 до 80 $^{\circ}$ %;
- 90 В при температуре окружающего воздуха (35 ± 5) $^{\circ}$ С и относительной влажности до 98 %.
- 2.21 Габаритные, присоединительные и монтажные размеры ПТВ приведены в приложении А.

Длина рабочей части L, мм: 100, 160, 200, 250, 320, 400, 500, 630, 800, 100.

- 2.22 Масса ПТВ 2, ПТВ 3 от 0,4 до 1,0 кг в зависимости от модификации.
- 2.23 ПТВ устойчивы к воздействию температуры окружающего воздуха в диапазоне от минус 25°C до 70 °C.
 - 2.24 ПТВ устойчивы к воздействию влажности:
 - До 95% для климатического исполнения С3 по ГОСТ 12997 84;
- До 98% для климатического исполнения C2 по ГОСТ 12997 84 и T3 по ГОСТ 15150 69 .
- 2.25 ПТВ в транспортной таре выдерживают температуру от минус 50°C до плюс 60°C, а так же относительной влажности до 98% при температуре 35 °C.
- 2.26 ПТВ в транспортной таре устойчивы к воздействию многократных ударов (ударной тряске) с числом ударов в минуту 80, с к.з. ускорения 98 м/с² и продолжительностью виброускорения 1 ч.
- 2.27 ПТВ обладают прочностью и устойчивостью к воздействию синусоидальной вибрации в диапазоне частот от 1 до 60 Гц при амплитуде виброускорения 19,6 м/с².
- 2.28 ПТВ не имеют конструктивных элементов и узлов с резонансными частотами от 1 до 60 Гц.

- 2.29 ПТВ обладают прочностью и устойчивостью к воздействию механических ударов одиночного действия с параметрами:
 - а) пиковое ударное ускорение 30 g, длительность ударного воздействия 15 мс,
 - б) пиковое ударное ускорение 80 g, длительность ударного воздействия 7 мс,
 - в) пиковое ударное ускорение 120 g, длительность ударного воздействия 3,5 мс;

Примечание - Форма ударного воздействия – полуволна синусоиды. Количество ударов 9 (по три удара в каждом из трёх взаимно перпендикулярных направлений). При этом ПТВ должен устанавливаться на платформу ударного стенда жёстко;

- 2.30 ПТВ обладают прочностью и устойчивостью к воздействию механических ударов многократного действия с параметрами:
 - а) пиковое ударное ускорение 15 g;
 - б) длительность ударного воздействия 6 мс;
- в) количество ударов по 20 ударов в каждом из трёх взаимно перпендикулярных направлений.

Примечание - При этом ПТВ должен устанавливаться на платформу ударного стенда жёстко. Рекомендуемая частота повторения ударов от 10 ударов до 80 ударов в минуту.

2.31 ПТВ обладают прочностью при систематических воздействиях, эквивалентных воздействию вибрации с параметрами, указанными в таблице 2.3.

Таблица 2.3

Частота, Гц	1,0	2,0	3,0	4,0	5,0	6,0	8,0	10,0	15,0	20,0	30,0
Ускорение,	6,0	15,0	21,0	51,0	48,0	43,0	38,0	31,0	20,0	19,0	14,0
M/c ²											

- 2.32 По устойчивости и электромагнитным помехам:
- ПТВ с индексом «ОП» соответствуют группе исполнения III по ГОСТ Р 50746 2000; критерий качества функционирования А;
- ПТВ с индексом «АС» соответствуют группе исполнения IV по ГОСТ Р 50746-2000, критерий качества функционирования А.

3 УСТРОЙСТВО И РАБОТА

- 3.1 ПТВ представляют собой многофункциональные, микропроцессорные, переконфигурируемые потребителем устройства.
- 3.2 ПТВ состоят из емкостного чувствительного элемента (ЧЭ) влажности, термопреобразователя сопротивления (ТС), защитного фильтра, корпуса и электронного устройства.
- 3.3 Принцип действия ПТВ основан на зависимости между емкостью ЧЭ и относительной влажностью окружающей среды с последующим преобразованием электрической емкости ЧЭ в сигналы постоянного тока и/или цифровые сигналы по интерфейсу RS 485.
- 3.4 В ПТВ 3 так же дополнительно осуществляется пересчет измеренных значений температуры и относительной влажности в значение абсолютной влажности, температуры точки росы и объемного влагосодержания.
- 3.5 ЧЭ влажности и температуры установлены на конце цилиндрического зонда и закрыты металлическим колпачком, обеспечивающим их защиту от механических повреждений.
- 3.6 Маркировка ПТВ должна соответствовать указанной ГОСТ 6651-2009 и КД. На корпусе ПТВ или на прикрепленной к нему табличке должны быть указаны:
 - Товарный знак предприятия изготовителя;
 - Обозначение модификации ПТВ;
 - Знак средства измерения;
 - Выходной сигнал, интерфейс;
 - Температурный диапазон эксплуатации;
 - Дата выпуска (год, месяц)
 - Заводской номер.

4 КОМПЛЕКТ ПОСТАВКИ

Комплектность поставки ПТВ соответствует приведенному в табл.4.1

Таблица 4.1

Наименование, обозначение	Количество	Примечание
Преобразователь температуры и		
влажности		
ПТВ – 1 – КПЛШ 405211.040	1	Модификация в
ПТВ – 2 – КПЛШ 405211.043	1	соответствии с
ПТВ – 3 – КПЛШ 405211.044	1	заказом
Паспорт КПЛШ 405211. 040 РЭ	1	
Кабель соединительный	1	
Руководство по эксплуатации	1	По требованию
Методика поверки МП 405211.040 - 2017		заказчика

5 МЕРЫ БЕЗОПАСНОСТИ

- 5.1 Безопасность эксплуатации ПТВ обеспечивается:
- Прочностью измерительных камер, соответствующим нормам, установленным в п 3.18:
- Изоляцией электрических цепей, в соответствие с нормами, установленными в п 3.20;
 - Надежным креплением при монтаже на объекте;
 - Конструкцией.
- 5.2 По способу защиты от напряжения электрическим током ПТВ соответствуют классу I по ГОСТ 12.2.007.0 75.
- 5.3 Заземление осуществляется посредством винта с шайбами, расположенными на корпусе ПТВ.
- 5.4 При испытании ПТВ необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019 80, и при эксплуатации «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей» для установок напряжением до 1000 В.
- 5.5 Установку и замену ПТВ на магистралях, подводящих измеряемую среду, необходимо производить при отсутствии давления в магистралях и отключенном электропитании.
- $5.6~\Pi TB$ являются пожаробезопасными, т.е вероятность возникновения пожара в указанных изделиях не превышает 10^{-6} в год в соответствии с ГОСТ 12.1.004-91 как в нормальных, так и в аварийных режимах работы АЭС.
- 5.7 При испытании и эксплуатации ПТВ 2, ПТВ 3 необходимо так же соблюдать требования НП 001 97 (ОПБ 88/97), ПНАЭТ 1 024 90 (ПБЯ РУ АС 84).

6 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 6.1 Подготовка к работе
- 6.1.1 Внешний осмотр
- 6.1.1.1 При внешнем осмотре устанавливают отсутствие механических повреждений, правильность маркировки, проверяют комплектность. При наличии дефектов, несоответствия комплектности, маркировки определяют возможность дальнейшего их применения.
 - 6.1.1.2 У каждого ПТВ проверяют наличие паспорта с отметкой ОТК.
 - 6.1.2 Монтаж изделия
- 6.1.2.1 ПТВ монтируется на посадочное место в положении удобном для обслуживания.
 - 6.1.2.2 При выборе места установки ПТВ необходимо учитывать следующее:
- Места установки должны обеспечивать удобные условия для обслуживания и демонтажа;
- Температура, измеряемая влажность окружающего воздуха, параметры вибрации не должны превышать значений, указанных в настоящем руководстве;
- Напряженность магнитных полей, вызванных внешними источниками переменного тока частотой 50 Гц, не должна превышать 300 А/м.
- 6.1.2.3 Заземлить корпус ПТВ, для чего отвод сечением 1 мм² от шины заземления присоединить к специальному зажиму на корпусе ПТВ.
 - 6.1.3 Опробование
- 6.1.3.1 Перед включением ПТВ необходимо убедиться в соответствии их установки и монтажа указаниям, изложенным в п. 6.1.2 настоящего руководства.
 - 6.1.3.2 Подключить преобразователь к сети питания.
 - 6.1.3.3 Включить питание. Проконтролировать включение индикации (при наличии).
- 6.1.3.4 Проконтролировать значение выходного сигнала и показания встроенного индикатора (при наличии). Они должны соответствовать температуре (20±5) °C.
 - 6.2 Использование изделий
 - 6.2.1 Значение измеряемой величины определяется по формуле:

$$A = \frac{(A_{\rm B} - A_{\rm H})}{(I_{\rm B} - I_{\rm H})} \cdot (I - I_{\rm H}) + A_{\rm H}, \tag{6.1}$$

Где A_B , A_H – верхний и нижний пределы измерений;

А - значение измеряемой величины в тех же единицах, что A_B и A_H ;

I — текущее значение выходного сигнала, мА;

- $I_{B},\ I_{H}$ верхнее и нижнее предельные значения выходного сигнала, мА.
- 6.2.2 ПТВ 2 преобразовывает в выходные аналоговые и/или цифровые сигналы измеряемые величины:
 - Температура в °С;
 - Относительная влажность в %.
- 6.2.3 ПТВ 3 преобразовывает в цифровые сигналы все измеряемые и расчетные параметры, а так же позволяет выбрать их для каждого из двух аналогового выходного канала:
 - Температура в °С;
 - Относительная влажность в %;
 - Абсолютная влажность в г/м³;
 - Влагосодержание в млн⁻¹;
 - Точка росы в °С т.р.
 - 6.2.4 Заводская установка каналов указывается в паспорте.
 - 6.2.5 В ПТВ возможна индикация следующих величин:
 - Измеряемая величина в канале 1;
 - Измеряемая величина в канале 2;
- Измеряемые величины в каналах 1 и 2 попеременно с периодом 5 с (заводская установка).

7 МЕТОДИКА ПОВЕРКИ

7.1 Общие положения

- 7.1.1 Поверку преобразователей температуры и влажности серии ПТВ проводят органы Государственной метрологической службы или другие организации, аккредитованные на право поверки (ПР 50.2.014-96). Требования к организации, порядку проведения поверки и форма представления результатов поверки определяют ПР 50.2.006-94 «ГИС. Проверка средств измерений. Организация и порядок проведения».
 - 7.12 Межповерочный интервал 2 года.
 - 7.13 Настоящая методика может быть использована для калибровки ПТВ.

7.2 Операции поверки

При проведении поверки должны быть выполнены операции, указанные в табл. 7.1.

Таблица 7.1

№ п/п	Операции поверки		Обязательность проведения	
			рации	
		При	При	
		первичной	периодической	
		поверке	поверке	
7.6.1	Внешний осмотр	+	+	ПТВ — 1,2,3,4
7.6.2	Опробование	+	+	ПТВ – 1,2,3,4
7.6.3	Проверка	+	+	ПТВ – 1,2,3,4
	электрического			
	сопротивления изоляции			
7.6.4	Проверка электрической	+	-	ПТВ – 1,2,3,4
	прочности изоляции			
7.6.5	Определение основной			
	погрешности:			
7.6.5.1	Измерения	+	+	ПТВ – 1,2,3,4
	температуры			
7.6.5.2	Относительной	+	+	ПТВ – 1,2,3,4
	влажности			
7.6.5.3	– Абсолютной	+	+	ПТВ – 3,4
	влажности			
7.6.5.4	Объемного	+	+	ПТВ – 3,4
	влагосодержания			
7.6.5.5	– Температуры	+	+	ПТВ – 3,4
				,
	точки росы			

7.3 Средства поверки

При проведении поверки должны применяться основание и вспомогательные средства поверки, указанные в табл. 7.2.

Таблица 7.2	- Перечень (средств поверки

Наименование средства поверки, обозначение	Основные метрологические и технические характеристики средства поверки
1. Генератор влажного газа «Родник – 4»	Диапазон воспроизведения относительной влажности 10÷98 %. Абсолютная погрешность воспроизведения относительной влажности ±1%
2. Генератор влажного газа ГВТ - 01	Диапазон воспроизведения относительной влажности 0÷98 %. Абсолютная погрешность воспроизведения относительной влажности ±1%
3. Источник питания постоянного тока БП-05 или аналоги	Выходное напряжение (24 ±0,48) В, 36 В. Ток нагрузки не более 45 мА.
4. Калибратор – измеритель унифицированных сигналов эталонный ИКСУ – 2000	Диапазон измерений тока 025 мА. Основная погрешность ± (10 ⁻⁴ +1) мкА
5. Эталонный барометр БОП – 1М – 2	Диапазон 0,5 ÷110 кПа Основная погрешность 0,1%
6. Термометр сопротивления платиновый вибропрочный эталонный ПТСЗ – 3 3-го разряда	Диапазон -50…+140 °C. Основная погрешность не более 0,04 °C
7. Калибратор температуры КТ – 1М или аналоги	Диапазон -60…+260°C. Погрешность термостатирования не более 0,05°C
8. Мегаомметр МС-05 или аналоги	Диапазон измерений 01000 мОм, класс точности 1,5.
9. Установка GPI-826	Испытательное напряжение не менее 500 В. Погрешность измерения не более ±5%.

7.4 Требования безопасности при поверке

- 7.4.1 Все работы при проведении поверки должны быть выполнены следующие условия:
 - Температура окружающего воздуха (20±2) °С;
 - Относительная влажность воздуха от 30 до 80 %;
 - Атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм.рт.ст.);
 - Напряжение питания (36±0,72) В или (24±0,48) В;
 - Нагрузочное сопротивление, Ом:

Для ПТВ с сигналом (4-20/20-4 мА)

500 ± 50 (для 36 В);

250 ±25 (или 24 В);

- Внешние электрические и магнитные поля должны отсутствовать;
- Вибрации, тряски, удары должны отсутствовать;
- Время выдержки ПТВ во включенном состоянии до начала поверки 30 мин.
- 7.5.2 Операции, проводимые со средствами поверки и проверяемыми изделиями, должны соответствовать указаниям, приведенными в эксплуатационной документации и настоящем руководстве.

- 7.6 Проведение поверки
- 7.6.1 Внешний осмотр поверяемых ПТВ проводится в соответствие с п 6.1.1.
- 7.6.2 Опробование
- 7.6.2.1 При опробовании поверяемых ПТВ проверяют их работоспособность в соответствие с п. 6.1.3 настоящего руководства.
 - 7.6.3 Проверка электрического сопротивления изоляции
- 7.6.3.1 Проверку электрического сопротивления изоляции проводят между контактами цепи питания и корпусом.
- 7.6.3.2 Проверку проводят мегаомметром МС-05 или другим аналогичным прибором.
- 7.6.3.3 Отчет показаний производят по истечению 1 мин после приложения напряжения. Сопротивление изоляции должно быть не менее 20 Мом.
 - 7.6.4 Проверка электрической прочности изоляции
- 7.6.4.1 При проверке электрической прочности изоляции испытательное напряжение прикладывают между контактами цепи питания и корпусом.
- 7.6.4.2 Проверку производят на установке GPI-826 или аналогичной, позволяющей поднимать напряжение плавно или равномерно ступенями, не превышающими 10 % испытательного напряжения.
- 7.6.4.3 Испытательное напряжение следует повышать плавно, начиная с нуля или со значения, не превышающего номинального напряжения цепи до испытательного в течение 5-10 с, но не более 30 с. Преобразователь выдерживают под действием испытательного напряжения 500 В в течение 1 мин. Затем напряжение плавно снижают до нуля или значения, не превышающее номинальное, после чего испытательную установку отключают.
 - 7.6.5 Определение основной абсолютной погрешности измерений температуры
- 7.6.5.1 Основную абсолютную погрешность измерений температуры определяемой в точных, соответствующих 5, 25, 50, 75, 95 % диапазона преобразований температуры поверяемых ПТВ по значениям аналогового (4-20/20-4 мА) и/или цифрового (интерфейс RS-485) выходных сигналов в следующей последовательности:
 - Устанавливают в термостате температуру, соответствующую поверяемой точке;
- Цилиндрический зонд ПТВ с влагоизолирующим защитным колпачком помещают в термостат и выдерживают его при заданной температуре в течение 30 мин, после чего измеряют ток I канала температуры и/или считывают значение температуры по цифровому выходу на значение ПК, одновременно контролируя температуру $T_{\rm o}$ в термостате по эталонному термометру ПТС3-3;
- Определяют температуру T, соответствующую измеренному значению тока I, канала температуры T по формуле:

$$T = \frac{I_{T} - I_{H}}{I_{B} - I_{H}} \cdot (T_{B} - T_{H}) + T_{H}, \quad (7.1)$$

Где І_Т – значение унифицированного выходного сигнала Т, мА;

I_H, I_B - нижний и верхний пределы унифицированного выходного сигнала, мА;

Т_Н, Т_В - нижний и верхний пределы преобразования температуры.

Рассчитывают абсолютную погрешность измерений температуры ∆ Т по формуле:

$$\Delta T = T - T_0, \qquad (7.2)$$

Значение основной абсолютной погрешности измерения температуры по показаниям аналогового и/или цифрового сигнала в каждой поверяемой точке не должно превышать значения, указанные в табл. 2.1

- 7.6.5.2 Основную абсолютную погрешность измерений относительной влажности определяют в точках, соответствующих 0,10,25,50,75,95 % диапазона преобразований влажности поверяемых ПТВ по значениям аналогового (4-20/20-4 мА) и/или цифрового (RS-485) выходных сигналов в следующей последовательности:
- Цилиндрический зонд ПТВ помещают в рабочую камеру генератора влажного газа;
- Устанавливают в рабочей камере генератора влажного газа температуру, равную (20±5) °С;
- Устанавливают в рабочей камере генератора относительную влажность φ_0 , соответствующую поверяемой точке;
- Выдерживают первичный преобразователь в указанных условиях в течение 1 ч и проводит измерения выходных токов канала влажности В и канала температуры ПТВ, а так же считывают значения влажности и температуры по цифровому каналу с экрана ПК;
- Определяют температуру Т согласно формуле 7.1, соответствующую значению тока канала температуры Т.
- Значение температуры (по аналоговому и цифровому сигналам) должно соответствовать (20 \pm 5) °C;
- Определяют относительную влажность φ , соответствующую значению тока I канала влажности $\mathit{I}_{\mathcal{B}}$, по формуле:

$$\varphi = \frac{I - I_H}{I_B - I_H} \cdot (\varphi_B - \varphi_H) + \varphi_H, \qquad (7.3)$$

Где φ_H , φ_B - нижний и верхний пределы измерений относительной влажности, указанный в таблице 2.1;

 Рассчитывают основную абсолютную погрешность измерений относительной влажности по формуле:

$$\Delta \varphi = \varphi - \varphi_0, \qquad (7.4)$$

Значение основной абсолютной погрешности измерений относительной влажности по показаниям аналогового и/или цифрового сигналов в каждой поверяемой точке не должно превышать соответствующего значений, указанного в табл. 2.1.

- 7.6.5.3 Основную приведенную погрешность определения абсолютной влажности контролируемой в точках 5,25,50,75,95 % диапазона преобразований влажности поверяемых ПТВ по значениям аналогового и/или цифрового выходных сигналов в следующей последовательности:
- Цилиндрический зонд ПТВ помещают в рабочую камеру генератора влажного газа;
- Устанавливают в рабочей камере генератора влажного газа температуру, равную (20±5) °С;
- Определяют абсолютную влажность a , соответствующую значению тока I канала влажности по формуле:

$$a = \frac{I - I_H}{I_R - I_H} \cdot (a_B - a_H) + a_H, \qquad (7.5)$$

Где a_H , a_B – нижний и верхний пределы преобразования абсолютной влажности;

- Считывают значения абсолютной влажности a по цифровому сигналу с экраном ПК:
- Вычисляют значения абсолютной влажности a_0 , полученные в рабочей камере генератора влажного газа по формуле:

$$a_0 = 21.7 \cdot \frac{\varphi_0 \cdot B}{T + 273.15},\tag{7.6}$$

Где В – давление насыщенных паров воды при температуре T(°C) в кПа

$$E = 0.6112 \cdot e^{\left(\frac{17.62 \cdot T}{243.12 + T}\right)},\tag{7.7}$$

– Рассчитывают основную приведенную погрешность определения абсолютной влажности γ_a по формуле:

$$\gamma_a = \frac{a - a_0}{a_B - a_H} \cdot 100\%, \qquad (7.8)$$

Значения основной приведенной погрешности определения абсолютной влажности в каждой поверяемой точке не должно превышать значений, приведенных в табл. 2.1.

- 7.6.5.4 Определение основной приведенной погрешности, определение объемного влагосодержания контролируют в точках 5,10,25,50,75,95 % диапазона преобразования влажности ПТВ по значениям аналогового и/или цифрового выходных сигналов в следующей последовательности:
- Рабочую камеру генератора влажного воздуха соединяют с эталонным барометром;
- При поверке ПТВ 4 к его каналу измерения давления Д подключают преобразователь давления;
 - При поверке ПТВ 2, ПТВ 3 задают фиксированные значения давления;
- Цилиндрический зонд ПТВ помещают в рабочую камеру генератора влажного газа;
- Устанавливают в рабочей камере генератора влажного газа температуру, равную (20±5)°С;
- Устанавливают в рабочей камере генератора относительную влажность φ_0 , соответствующую поверяемой точке;

- Выдерживают зонд в указанных условиях в течение 1 ч и проводят измерение выходных токов канала температуры Т и канала влажности В ПТВ и/или считывают значения температуры и влажности по цифровому сигналу с экрана ПК;
- Определяют значение температуры T для токового сигнала канала T. Значение температуры должно соответствовать (20±5)°С;
- По эталонному барометру измеряют абсолютное давление P₀ (кПа) в рабочей камере генератора влажности;
- Определяют влагосодержание X, соответствующее значению тока I канала влажности В по формуле:

$$X = \frac{I - I_H}{I_B - I_H} \cdot (X_B - X_H) + X_{H_s}$$
 (7.9)

Где X_H , X_B - нижний и верхний пределы преобразования влагосодержания;

 Вычисляют значение влагосодержания X₀, полученное в рабочей камере генератора влажного газа по формуле:

$$X_0 = \frac{\varphi_0 \cdot B}{P_0 - \varphi_0 \cdot B \cdot 0.01} \cdot 10^{-4}, \tag{7.10}$$

– Рассчитывают основную приведенную погрешность определения влагосодержания $\gamma_{\rm X}$ по формуле:

$$\gamma_X = \frac{X - X_0}{X_B - X_H} \cdot 100\%$$
, (7.11)

Значение основной приведенной погрешности определения влагосодержания в каждой поверяемой точке не должно превышать значений в табл.2.1.

7.6.5.5 Определение основной абсолютной погрешности измерения температуры точки росы проводят в точках, приведенных в табл. 7.4. Для этого применяют генераторы влажного газа «Родник – 4» или ГВТ – 01 с пересчетом воспроизводимой или относительной влажности в точки росы.

Таблица 7.4

$T - T_D$, $^{\circ}$ C	φ_0 , %	β, °C/%
0 – 10	55	0,3
10 – 20	30	0,5
20 – 40	6	2
40 – 50	3	4
50 – 60	0 (2)	8

Основную абсолютную погрешность измерения температуры точки росы определяют в следующей последовательности:

- Зону ПТВ помещают в рабочую камеру генератора влажного газа;
- Устанавливают в рабочей камере генератора температуру T₀, равную (20±5)°С;
- Устанавливают в рабочей камере генератора относительную влажности φ_0 , соответствующую измеряемой точке (температура точки росы $T_{D=0}$). Значение относительной влажности для данной точки вычисляют по формуле:

$$\varphi_0 = \frac{E(T_{D0})}{E(T_0)} \cdot 100\%, \qquad (7.12)$$

При этом давление насыщенных паров $E(T_{D0})$, $E(T_0)$ при температурах T_{D0} и T_0 определяют по формуле 7.7.

- Выдерживают зонд в указанных условиях в течение 1 ч и проводит измерение выходных токов и температуру по формуле 7.1, соответствующую значению тока канала температуры Т. Значение температуры должно соответствовать (20±5)°С;
- Определяют температуру точки росы T_D , соответствующую значению тока I канала влажности В по формуле:

$$T_D = \frac{(I - I_H)}{(I_B - I_H)} \cdot (T_{DB} - T_{DH}) + T_{DH}, \tag{7.13}$$

Где T_{DB} , T_{DH} - нижний и верхний пределы преобразования температуры точки росы;

Рассчитывают основную абсолютную погрешность измерений температуры точки росы по формуле:

$$\Delta T_D = T_D - T_{DO}, \qquad (7.14)$$

Значение основной абсолютной погрешности измерений температуры точки росы в каждой поверяемой точке не должна превышать соответствующие значения, указанные в табл. 2.1.

- 7.6.6 Оформление результатов поверки.
- 7.6.6.1 Положительные результаты первичной поверки ПТВ оформляют записью в паспорте, заверенной подписью и клеймом поверителя и/или оформлением свидетельством о поверке по форме приложения В и ПР 50.2.006 94.
- 7.6.6.2 При отрицательных результатах поверки ПТВ не допускаются к применению. На них оформляется извещение о непригодности по форме приложения В и ПР 50.2.006 94.

8 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1 Техническое обслуживание ПТВ заключается в соблюдении правил эксплуатации, хранения и транспортирования в соответствие с настоящим руководством, профилактическим осмотрам и периодической поверке.
- 8.2 Профилактические осмотры проводятся в порядке, установленном на объектах эксплуатации ПТВ, но не реже одного раза в год и содержат следующие операции:
 - Внешний осмотр;
 - Проверку прочности крепления ПТВ.
 - 8.3 Периодическую поверку ПТВ проводят не реже одного раза в два года.
 - 8.4 Ремонт ПТВ производится на предприятии изготовителе.
- 8.5 Очистка защитного фильтра, для чего необходимо осторожно открутить защитный фильтр и мыльной водой, мягкой щеткой промыть ЧЭ. Очистить от грязи, промыть защитный металлический фильтр и осторожно установить его на место.

ВНИМАНИЕ! Запрещается чистить ЧЭ механическим способом или с использованием химических растворителей.

9 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 9.1 ПТВ транспортируется всеми видами транспорта в крытых транспортных средствах. Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 50 до +50 °C с соблюдением мер защиты от ударов и вибраций.
- 9.2 Условия хранения ПТВ в транспортной таре в складских условиях должны соответствовать условиям ГОСТ 15150-69.

10 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 10.1 Изготовитель гарантирует соответствие данного ПТВ требованиям технических условий при соблюдении потребителем условий эксплуатации, хранения и транспортирования.
- 10.2 Гарантийный срок эксплуатации устанавливается 24 месяца со дня изготовления или отгрузки.
- 10.3 При потере работоспособности или несоответствия показателям, установленных в технических условиях, при условии соблюдения требований пункта 12.1, потребитель оформляет в установленном порядке рекламационный акт и направляет его по адресу:

620026, г.Екатеринбург, а/я 784, НПФ "Сенсорика".

Контактные телефоны: (343) 310-19-07, 365-82-20, 378-73-95

Факс: (343) 263-74-24

E-mail: mail@sensorika.ru

http://www.sensorika.org

ПРИЛОЖЕНИЕ А Монтажно-габаритные корпуса ПТВ

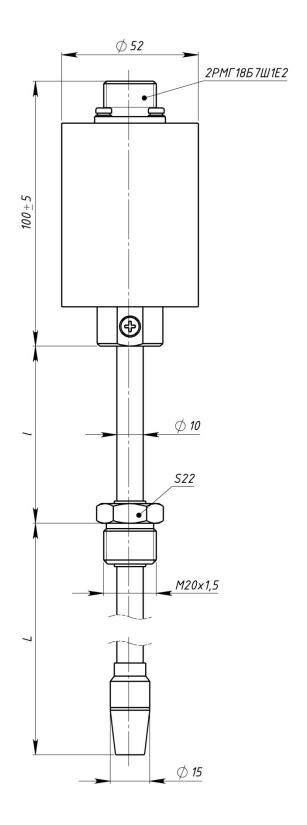


Рисунок 1 — Габаритно-монтажные размеры исполнения ПТВ-1/М1-1 (в корпусе типа $H\Gamma$ -1)

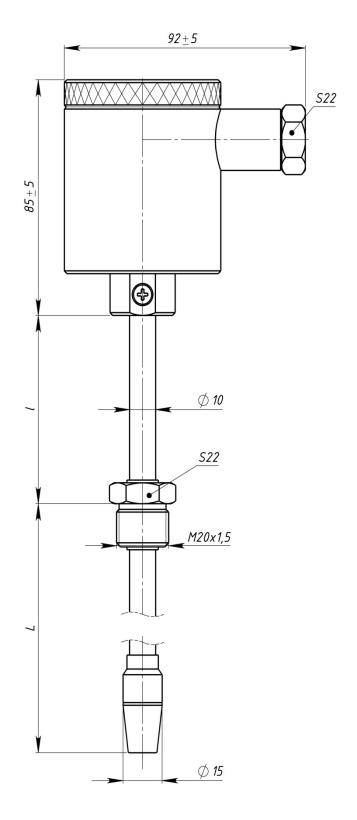


Рисунок 2 – Габаритно-монтажные размеры исполнения ПТВ-1/М1-2 (в корпусе типа НГ-2)

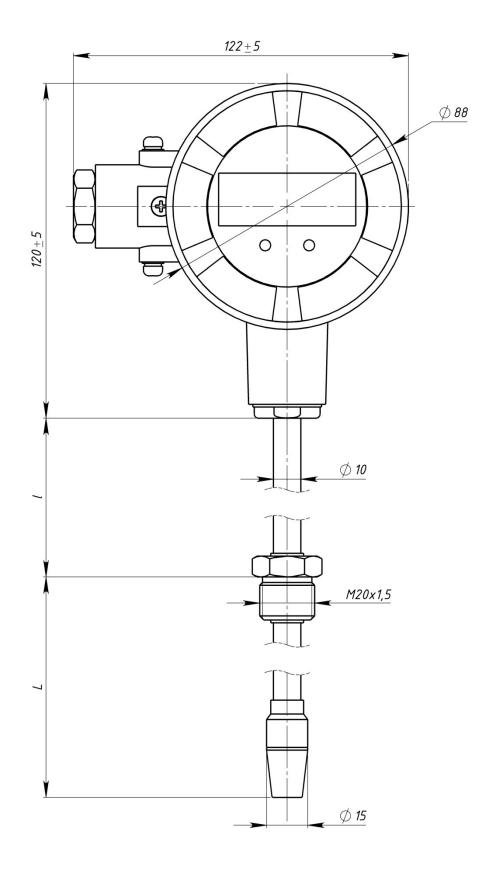


Рисунок 3 – Габаритно-монтажные размеры исполнения ПТВ-2/М1И-3 (в корпусе типа АЛ-2)

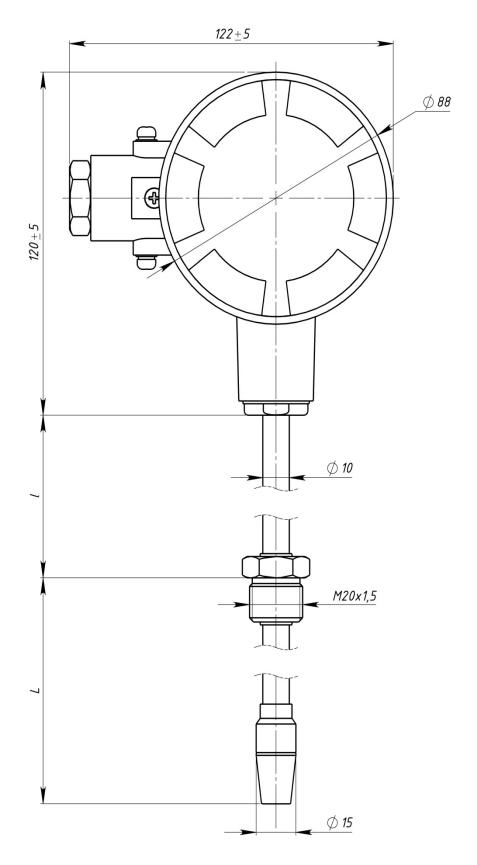


Рисунок 4 – Габаритно-монтажные размеры исполнения ПТВ-2/М1-4 (в корпусе типа АЛ-2)

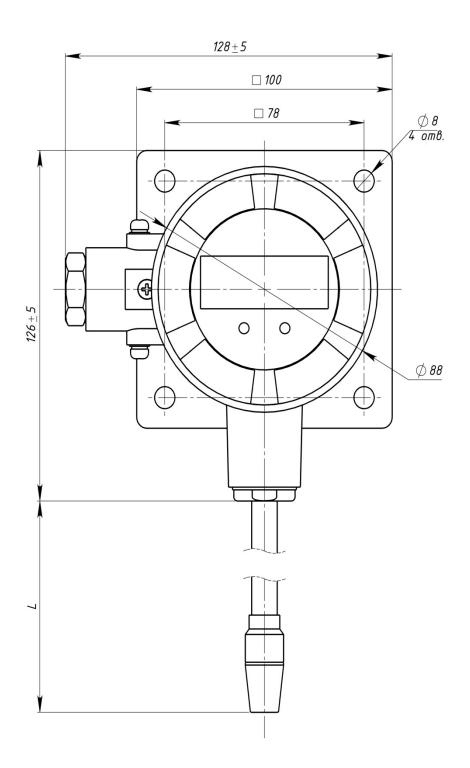


Рисунок 5 – Габаритно-монтажные размеры исполнения ПТВ-2/М2И-5 (в корпусе типа АЛ-3)

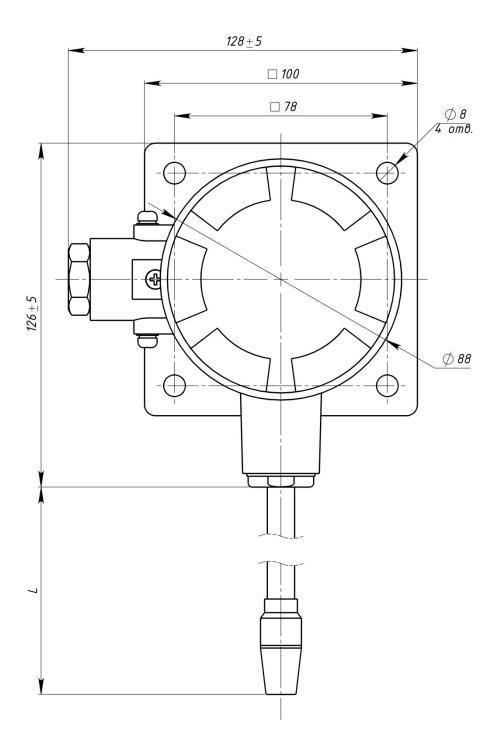


Рисунок 6 – Габаритно-монтажные размеры исполнения ПТВ-2/M2-6 (в корпусе типа АЛ-3)

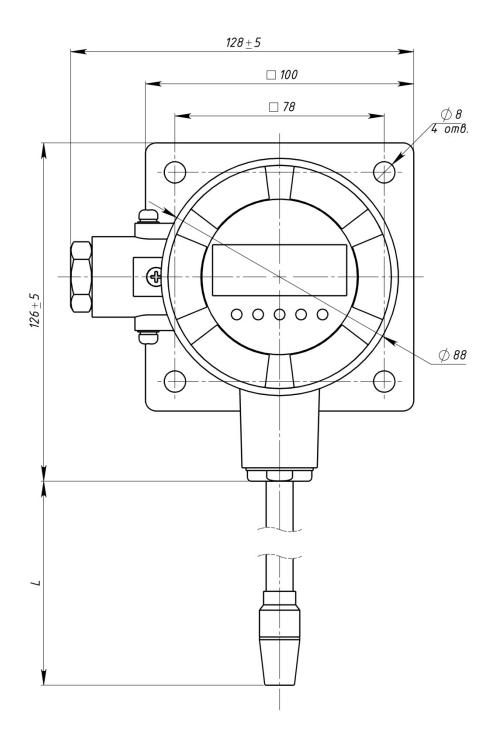


Рисунок 7 – Габаритно-монтажные размеры исполнения ПТВ-3/М2И-7 (в корпусе типа АЛ-3)

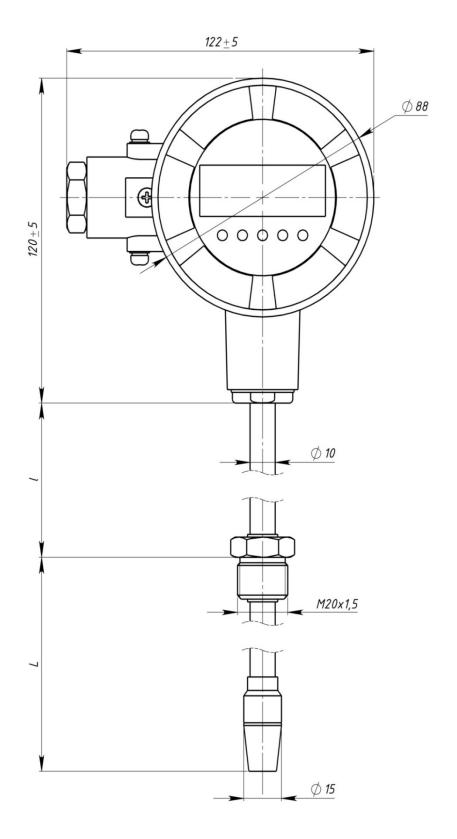


Рисунок 8 – Габаритно-монтажные размеры исполнения ПТВ-3/М1И-8 (в корпусе типа АЛ-3)

ПРИЛОЖЕНИЕ Б СХЕМЫ ПОДКЛЮЧЕНИЯ ПТВ

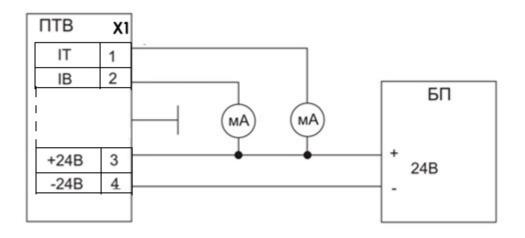


Рисунок 1 – Схема подключения ПТВ с выходом по постоянному току (двухпроводная схема подключения)

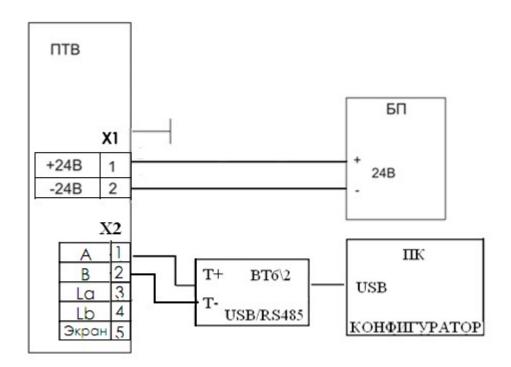


Рисунок 2 – Схема подключения ПТВ с интерфейсом RS 485

ПРИЛОЖЕНИЕ В

СВИДЕТЕЛЬСТВО О ПОВЕРКЕ

				Действительно до ""
Средство измере	ний			
		наименовани	е, тип	
11.17		заводско	й	
номер,		11.1040354300	**	
TOTAL TANKSHIDA				
принадлежащее_		ние юрилического	о (физического) лиг	па
поверено и на осн пригодным к при Оттиск поверительного в или печати (штам	менению.	гатов первичной	(периодической) по	оверки признано
должность руков подразделения	одителя	(подпись)	(инициалы, ф	(кицима
Поверитель		<u> </u>		
	(подпись)	(инициа	лы, фамилия)	
			""	19 r.

Примечание. Оборотная сторона свидетельства о поверке заполняется в соответствии с нормативна документами по поверке средств измерений.

ПРИЛОЖЕНИЕ Г ОБОЗНАЧЕНИЯ ПРИ ЗАКАЗЕ ПРИБОРОВ

- 1. Тип преобразователя: ПТВ-1, ПТВ-2, ПТВ-3 (табл.1).
- 2. Обозначение исполнения:

Общепромышленное (не обозначается);

AC – атомное (повышенной надежности);

Ех – взрывозащищенное.

Возможно совмещение исполнений. Базовое исполнение – общепромышленное.

- 3. Классификационное исполнение (для АЭС):
 - 2, 2H, 2HУ, 3, 3H, 3НУ (с приемкой), 4, 4H (без приемки).
- 4. Конструктивное исполнение:

М1-1, М1-2, М1-4 – для канального монтажа;

М2-6 – для настенного монтажа (ПТВ-2);

М1И-3, М1И-8, М2И-5, М2И-7 – с цифровой индикацией (ПТВ-2, ПТВ-3).

5. Диапазон преобразования величин в 1-м канале (табл. 2, 3)

Базовое исполнение – относительная влажность 0...100 %.

6. Диапазон преобразования величины во 2-м канале (табл. 2, 3)

Базовое исполнение – температура 0...100 °C.

7. Индекс заказа для класса точности:

А, В (табл. 3).

Базовое исполнение – класс В.

- 8. Тип выходного сигнала/ интерфейса:
 - **420** с токовыми сигналами 4-20 мА;

HART – с HART-протоколом;

485 – с интерфейсом RS485.

Длина рабочей части L, мм: 100, 160, 200, 250,320, 400, 500, 630, 800, 1000.

- 10. Климатическое исполнение:
 - **t1070** температура от –10 °C до +70 °C;
 - **t4070** температура от -40 $^{\circ}$ C до +70 $^{\circ}$ C (исполнение без индикации):

t2580 – температура от -25 $^{\circ}$ C до +80 $^{\circ}$ C.

Базовое исполнение – температур от -10 $^{\circ}$ C до +70 $^{\circ}$ C.

- 11. Наличие индикации одна из величин 1-го или 2-го каналов (табл.4). Базовое исполнение HT
- 12. Варианты электрических разъемов:
- GSP (вилка GSP311), ШР14 (вилка 2РМГ-К) для преобразователей с токовым сигналом, HART; ШР22 (вилка 2РМГ-22) для всех типов выходного сигнала.

Базовое исполнение: GSP, ШР14 – для токового сигнала ШР22 – для RS485.

- 13. Прикладное программное обеспечение для конфигурирования преобразователя + модуль BT6/1 преобразования интерфейсов RS232/ RS485 (опция), индекс заказа ПО.
 - 14. Дополнительные стендовые испытания 360 ч (опция), код заказа (опция) 360.
 - 15. Вид метрологического контроля:

П – поверка;

К – калибровка.

Базовое исполнение – поверка.

Обозначение технических условий: КПЛШ.405211.040 ТУ.

Внимание! Обязательным для заполнения являются:

Поз.1 – тип преобразователя;

Поз.4 – конструктивное исполнение;

Поз.8 – тип выходного сигнала/интерфейса;

Поз.9 – длина рабочей части.

Все незаполненные позиции будут базовыми.

Таблица 1. Модификации преобразователей ПТВ

Модификации	ПТВ-1	ПТВ-2	ПТВ-3	
Измеряемые параметры	Температура, относительная влажность			
Определяемые (расчетные) параметры	-	-	Температура точки росы, абсолютной влажности, объемное влагосодержание	
LED-индикация	-	+	+	
Выходные сигналы/ интерфейсы	(0-5) мА, (4-20)	(0-5) мА, (4-20) мА, RS-485	(0-5) мА, (4-20) мА, НАRT	
Монтаж	Канальный	Канальный, настенный	Настенный	

Таблица 2 - Метрологические характеристики ПТВ-1, ПТВ-2

Типы (модификации)	Диапазоны измерения температуры, °С	Диапазоны измерения относительной влажности, %	
01	-25+25	598	
02	0+50		
03	0+100		
04	-40+110		
05	-25+25	0100	
06	0+50		
07	0+100		
08	-40+110		

Примечание: пределы допускаемых основных абсолютных погрешностей измерения:

- температуры ±0,4 °С;
- относительной влажности ±3 %.

Таблица 3 - Метрологические характеристики ПТВ-3

Измеряемые	Условное обозначение	Диапазон измерений	Пределы допускаемой основной погрешности	
величины	величины		Группа А	Группа Б
Температура	Т	От минус 40 до плюс 110 °C	±0,2 °C	± 0,3 °C
Температура точки росы	T _D	От минус 40 до плюс 80 °C	± 1°C*) ±2°C**) ±4°C***)	± 1°C* ±2°C** ±4°C***
Относительная влажность	φ	От 0 до 100	±2 %	± 3 %
Абсолютная влажность (при t=20 °C)	α	От 0 до 18 г/м ^{3 ****}	±2 %	± 3 %
Объемное	X	От 0 до 2500х $\frac{100}{\rho}$ млн ⁻¹	±2 %	± 3 %
влагосодержание (при t=20 °C)	^	Где р – абсолютное давление в кПа		

Примечания:

1. Указанные пределы основной абсолютной погрешности измерений относительной влажности указаны для диапазона от 10 до 90 %, за пределами данного диапазона погрешность $\pm 7~\%$.

- 2. Диапазоны измерения по требованию заказчика могут задаваться отличными от приведенных внутри диапазонов.
- 3. Допускаемая основная погрешность измерения абсолютной влажности влагосодержания y_n , приведенная к диапазону преобразования, вычисляется по формуле:

$$\gamma_{\Pi} = \gamma \cdot \frac{D_u}{D_{\Pi}}$$

где у – допускаемая основная погрешность в % от диапазона измерений;

 D_{u} и D_{π} – диапазоны измерений (при данных температуре и давлении анализируемого газа) и преобразования соответственно.

- *- для Т-T_D<20;
- **- для 20< T-T_D <50;
- *** для 50< T-T_D <60.
 **** при увеличении (уменьшении) температуры анализируемого газа на 10 °C диапазон измерений увеличивается (уменьшается) в 1,8 раза.

Таблица 4 - Индицируемая величина

Индицируемая величина	Код при заказе	
Нет индикатора	-	
Величина в 1-ом канале (влажность)	Н	
Величина во 2-ом канале (температура)	Т	
Величина в 1-ом и во 2-ом канале попеременно	HT	

Базовое исполнение Н.

Пример обозначения (сокращений)

ПТВ-2-М1И-420-100

Подлежат обязательному заполнению следующие строки.

Расшифровка обозначения: преобразователь температуры и влажности ПТВ-2, диапазон общепромышленное, для канального монтажа, относительной влажности от 0 до 100 %, выходной сигнал 4-20 мА, длина рабочей части 100 мм, температура окружающего воздуха от -10 до +70 °C, цифровая индикация влажности, подсоединение – вилка 2РМГ-К, поверка.